home *** CD-ROM | disk | FTP | other *** search
- /*
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that this notice is preserved and that due credit is given
- * to the University of California at Berkeley. The name of the University
- * may not be used to endorse or promote products derived from this
- * software without specific prior written permission. This software
- * is provided ``as is'' without express or implied warranty.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- */
-
- #ifndef lint
- static char sccsid[] = "@(#)acosh.c 5.2 (Berkeley) 4/29/88";
- #endif /* not lint */
-
- /* ACOSH(X)
- * RETURN THE INVERSE HYPERBOLIC COSINE OF X
- * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
- * CODED IN C BY K.C. NG, 2/16/85;
- * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85.
- *
- * Required system supported functions :
- * sqrt(x)
- *
- * Required kernel function:
- * log1p(x) ...return log(1+x)
- *
- * Method :
- * Based on
- * acosh(x) = log [ x + sqrt(x*x-1) ]
- * we have
- * acosh(x) := log1p(x)+ln2, if (x > 1.0E20); else
- * acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
- * These formulae avoid the over/underflow complication.
- *
- * Special cases:
- * acosh(x) is NaN with signal if x<1.
- * acosh(NaN) is NaN without signal.
- *
- * Accuracy:
- * acosh(x) returns the exact inverse hyperbolic cosine of x nearly
- * rounded. In a test run with 512,000 random arguments on a VAX, the
- * maximum observed error was 3.30 ulps (units of the last place) at
- * x=1.0070493753568216 .
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- */
-
- #if defined(vax)||defined(tahoe) /* VAX D format */
- #ifdef vax
- #define _0x(A,B) 0x/**/A/**/B
- #else /* vax */
- #define _0x(A,B) 0x/**/B/**/A
- #endif /* vax */
- /* static double */
- /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
- /* ln2lo = 1.6465949582897081279E-12 ; Hex 2^-39 * .E7BCD5E4F1D9CC */
- static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
- static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
- #define ln2hi (*(double*)ln2hix)
- #define ln2lo (*(double*)ln2lox)
- #else /* defined(vax)||defined(tahoe) */
- static double
- ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
- ln2lo = 1.9082149292705877000E-10 ; /*Hex 2^-33 * 1.A39EF35793C76 */
- #endif /* defined(vax)||defined(tahoe) */
-
- double acosh(x)
- double x;
- {
- double log1p(),sqrt(),t,big=1.E20; /* big+1==big */
-
- #if !defined(vax)&&!defined(tahoe)
- if(x!=x) return(x); /* x is NaN */
- #endif /* !defined(vax)&&!defined(tahoe) */
-
- /* return log1p(x) + log(2) if x is large */
- if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
-
- t=sqrt(x-1.0);
- return(log1p(t*(t+sqrt(x+1.0))));
- }
-